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A CONDITION FOR PARACOMPACTNESS
OF A MANIFOLD

K. B. MARATHE

1. Introduction

It is known that if a differential manifold M is paracompact, then it can be
made into a Riemannian manifold with a unique torsion-free Levi-Civita con-
nection. In discussing the structure of Minkowski spaces (see [5]), the author
came across a condition for paracompactness of a manifold. This condition is
stated and proved as Theorem 1, which is the main result of this paper. We
begin by introducing some geometrical preliminaries.

2. Geometrical preliminaries

By a differentiable n-dimensional manifold of class C7, we mean a Hausdorff
" connected locally Euclidean topological space with a fixed C” atlas. We assume
r to be large enough to ensure the smoothness of the operations involved. By a
pseudo-Riemannian manifold, we mean a manifold with fundamental tensor
of arbitrary signature (definite or indefinite). Let L denote the principal fibre
bundle of linear frames on M with structure group G = GL(n, R), and let H
be the closed subgroup of G which leaves a given nondegenerate quadratic
form on R* invariant. Expressing x ¢ R* in terms of its natural basis, we can
write the quadratic form Q:R” — R as

Ox) = a;x'x7
where x = (x', - - -, x") € R", a;; ¢ R, and summation convention is used. Con-
sider the action of G on L X G/H, given by
a-(,§ =@ L,§-aYeL X G/H

forae G and (1, &) e L X G/H, where a acts on the frame [ by acting on each
vector in the frame and G/H is regarded as a right coset space.

The quotient space of L X G/H under this action of G is denoted by
EM,G/H, G, L) or E for short. The map L X G/H — L— M induces the map
7z: E — M, and a differential structure is introduced in E in a natural manner
by using 75 (see [4]). The surjective map (1, &) — &.10of L X G/H onto L/H
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factors through E, and allows us to identify E with L/H. Consequently L can
be regarded as a fibre bundle over E with structure group H. Let 7: L — E =
L/H be the natural projection. We are now in a position to state the main
result as

Theorem 1. Let L be the principal fibre bundle of linear frames over an
n-dimensional real differentiable manifold with structure group G, H be the
closed subgroup of G which leaves invdriant a given nondegenerate quadratic
form on R, and E(M,G/H,G,L) be the associated bundle of L with fibre
G/H. Then M is paracompact if E admits a cross-section.

3. Proof of Theorem 1

The proof is divided into several lemmas. We omit the proofs of Lemmas 1
and 2 as they follow easily from the standard constructions (see, for example,
[4D.

Lemma 1. Let ¢: M — E be a cross-section of E. Then there exists a
unique (depending on ¢) reduced subbundle P of L with H as its structure
group.

Lemma 2. There exists a unique torsion-free connection in the bundle P
which makes M into a pseudo-Riemannian space with fundamental tensor in-
duced by the quadratic form Q.

Lemma 3. L can be made into a Riemannian manifold and hence is para-
compact.

Proof. Using the pseudo-Riemannian structure on M and its Levi-Civita
connection, we obtain the Cartan differential forms on L denoted by 8;, W,
where i,j = 1, ,n. These forms are linearly independent and make L
globally parallellzable Usmg classical notation we can make L into a Rieman-
nian manifold with “metric” given by

dst =Y 6 + 3 W, .
i i

Thus L is a metric space and hence paracompact by A. H. Stone’s theorem.

Lemma 4. M is paracompact.

Proof. Since M is connected, L has at most two connected components,
open and closed in L, and therefore it is sufficient to restrict our considerations
to a component of L, say L’. Clearly L’ is locally compact and paracompact,
and hence can be written as a countable union of compact sets K, such that
K, is contained in the interior of K,,,, (see, for example, {1, Chapter I, § 5,
Theorem 5, p. 107]). Also, each K, is metrizable, and therefore z(K,) is also
metrizable, where = is the restriction to L’ of the projection of L onto M. (For
a proof, see, for example, [2, Chapter [X, § 2, Proposition 17, p. 44). Since
z is an open mapping, n(K,) is contained in the interior of z(K,.,); this im-
plies that M, which is the union of #(K,), is metrizable (see [3, (12.4.7), p.
13]) and hence paracompact.
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Lemmas 3 and 4 lead to the following corollaries which characterize the
paracompactness of M.

Corollary 1. M is paracompact if and only if L admits a connection.

Proof. Cartan forms can be constructed when a connection on L is given,
and the remaining parts of Lemma 3 and Lemma 4 now go through.

As a special case of Corollary 1 we have the following:

Corollary 2. M is paracompact if and only if it admits a pseudo-Rieman-
nian structure.
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